Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masoud Faroughi, ${ }^{\text {a }}$ Andrew C. Try ${ }^{\text {a }}$ and Peter Turner ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Department of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and ${ }^{\text {b }}$ Department of Chemistry, The University of Sydney, NSW 2000, Australia

Correspondence e-mail: andrew.try@mq.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.069$
Data-to-parameter ratio $=27.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,8-Dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine

In the molecule of the title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$, the $2,8-$ dibromo analogue of Tröger's base, the two aryl rings are offset with respect to one another by virtue of the diazocine bridge. The dihedral angle between the two benzene rings is $94.45(4)^{\circ}$.

Comment

Tröger's base is a chiral C_{2}-symmetric V-shaped molecule derived from the acid-catalysed condensation of p-toluidine and formaldehyde. Since its first reported synthesis (Tröger, 1887), numerous substituted anilines have been used to prepare a range of analogues bearing different types of substituents. 2,8-Dihalogenated systems were recently reported for the first time (Jensen \& Wärnmark, 2001) and these have since been elaborated into a range of other systems via metal-halogen exchange reactions (Jensen, Strozyk \& Wärnmark, 2002; Jensen, Tejler \& Wärnmark, 2002; Kiehne \& Lützen, 2004; Hof et al., 2005).

We were interested in preparing a range of dihalo Tröger's base compounds as precursors for supramolecular recognition elements. The synthesis of (I) in racemic form was achieved by reacting 4-bromoaniline with paraformaldehyde in trifluoroacetic acid (TFA).

In the molecule of the title compound, (I), the bond lengths and angles are within normal ranges (Allen et al., 1987).

Rings B (N1/N2/C1/C6/C7/C15) and $C(\mathrm{~N} 1 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 13-$ C15) are not planar, having total puckering amplitudes, Q_{T}, of 1.381 (3) and 0.740 (4) \AA, respectively, and twist conformations $\varphi=-115.72(7)^{\circ}$ and $\theta=109.77(5)^{\circ}$, and $\varphi=-33.87(6)^{\circ}$ and $\theta=47.44(5)^{\circ}$ (Cremer \& Pople, 1975). Rings A (C1-C6) and $D(\mathrm{C} 8-\mathrm{C} 13)$ are, of course, planar and the dihedral angle between them is $A / D=94.45$ (4) ${ }^{\circ}$.

The two aryl rings of Tröger's base analogues are offset with respect to one another by virtue of the diazocine bridge and they generally subtend an angle of approximately 90°. In fact, the dihedral angle has been found to vary between 82 (Solano et al., 2005) and 104° (Wilcox et al., 1987) for simple dibenzo Tröger's base analogues, and is dependent upon the nature of the substituents on the ring. The only other reported X-ray crystal structure of a dihalo Tröger's base is that of 3,9-

Received 31 July 2006
Accepted 31 July 2006
dibromo-4,10-dimethyl-6 H,12H-5,11-methanodibenzo[b,f][1,5]diazocine, which has a dihedral angle of 100.9° (Hansson et al., 2003).

Experimental

The title compound was prepared according to a literature procedure (Jensen \& Wärnmark, 2001) in 70\% yield and recrystallized from chloroform.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$	$V=688.2(7) \AA^{3}$
$M_{r}=380.09$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.834 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.364(5) \AA$	Mo K \AA radiation
$b=10.420(5) \AA$	$\mu=5.88 \mathrm{~mm}^{-1}$
$c=10.815(5) \AA$	$T=150(2) \mathrm{K}$
$\alpha=82.967(5)^{\circ}$	Prism, colourless
$\beta=76.878(5)^{\circ}$	$0.43 \times 0.38 \times 0.38 \mathrm{~mm}$

Data collection
Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.091, T_{\text {max }}=0.110$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.069$
$S=1.28$
4744 reflections
172 parameters

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.03 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.93 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C15-N1-C1-C6	$-15.5(2)$	C1-N1-C15-N2	$52.35(18)$
C15-N2-C7-C6	$47.43(17)$	C14-N1-C15-N2	$-70.31(17)$
C15-N2-C8-C13	$-15.1(2)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 15-\mathrm{N} 1$	$53.68(18)$
C15-N1-C14-C13	$45.25(17)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 15-\mathrm{N} 1$	$-69.79(17)$

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3. 6 (Hall et al., 1999) and ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The authors thank the Australian Research Council for a Discovery Project grant to ACT (DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (1995). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hall, S. R., du Boulay, D. J. \& Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 System. University of Western Australia, Perth: Lamb.
Hansson, A., Jensen, J., Wendt, O. F. \& Wärnmark, K. (2003). Eur. J. Org. Chem. pp. 3179-3188.
Hof, F., Schär, M., Scofield, D. M., Fischer, F., Diederich, F. \& Sergeyev, S. (2005). Helv. Chim. Acta, 88, 2333-2344.

Jensen, J., Strozyk, M. \& Wärnmark, K. (2002). Synthesis, pp. 2761-2765.
Jensen, J., Tejler, J. \& Wärnmark, K. (2002). J. Org. Chem. 67, 6008-6014.
Jensen, J. \& Wärnmark, K. (2001). Synthesis, pp. 1873-1877.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kiehne, U. \& Lützen, A. (2004). Synthesis, pp. 1687-1695.
Molecular Structure Corporation (1998). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. \& Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510-3517.

Tröger, J. (1887). J. Prakt. Chem. 36, 225-245.
Wilcox, C. S., Greer, L. M. \& Lynch, V. (1987). J. Am. Chem. Soc. 109, 18651867.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

